Search results for "Fractional derivatives"

showing 7 items of 7 documents

The Multiscale Stochastic Model of Fractional Hereditary Materials (FHM)

2013

Abstract In a recent paper the authors proposed a mechanical model corresponding, exactly, to fractional hereditary materials (FHM). Fractional derivation index 13 E [0,1/2] corresponds to a mechanical model composed by a column of massless newtonian fluid resting on a bed of independent linear springs. Fractional derivation index 13 E [1/2, 1], corresponds, instead, to a mechanical model constituted by massless, shear-type elastic column resting on a bed of linear independent dashpots. The real-order of derivation is related to the exponent of the power-law decay of mechanical characteristics. In this paper the authors aim to introduce a multiscale fractance description of FHM in presence …

Multiscale FractanceRandom modelsStochastic modellingMathematical analysisModel parametersGeneral MedicineFractional HereditarinessDashpotFractional calculusMassless particleFractional DerivativesFractional Derivatives; Fractional Hereditariness; Multiscale Fractance; Random modelsFractional HereditarineCalculusExponentNewtonian fluidLinear independenceFractional DerivativeMathematicsProcedia IUTAM
researchProduct

A mechanical picture of fractional-order Darcy equation

2015

Abstract In this paper the authors show that fractional-order force-flux relations are obtained considering the flux of a viscous fluid across an elastic porous media. Indeed the one-dimensional fluid mass transport in an unbounded porous media with power-law variation of geometrical and physical properties yields a fractional-order relation among the ingoing flux and the applied pressure to the control section. As a power-law decay of the physical properties from the control section is considered, then the flux is related to a Caputo fractional derivative of the pressure of order 0 ⩽ β ≤ 1 . If, instead, the physical properties of the media show a power-law increase from the control sectio…

Numerical AnalysisAnomalous diffusionApplied MathematicsVolumetric fluxMass flowAnomalous diffusion; Anomalous scaling; Darcy equation; Fractional derivatives; Porous mediaMathematical analysisPorous mediaAnomalous diffusionFluxFractional derivativeViscous liquidDarcy–Weisbach equationFractional calculusModeling and SimulationDarcy equationSettore ICAR/08 - Scienza Delle CostruzioniPorous mediumAnomalous scalingMathematicsCommunications in Nonlinear Science and Numerical Simulation
researchProduct

Fractional-order theory of heat transport in rigid bodies

2014

Abstract The non-local model of heat transfer, used to describe the deviations of the temperature field from the well-known prediction of Fourier/Cattaneo models experienced in complex media, is framed in the context of fractional-order calculus. It has been assumed (Borino et al., 2011 [53] , Mongiovi and Zingales, 2013 [54] ) that thermal energy transport is due to two phenomena: ( i ) A short-range heat flux ruled by a local transport equation; ( ii ) A long-range thermal energy transfer proportional to a distance-decaying function, to the relative temperature and to the product of the interacting masses. The distance-decaying function is assumed in the functional class of the power-law …

PhysicsNumerical AnalysisField (physics)business.industryApplied MathematicsFractional derivatives; Fractional-order calculus; Fractional-order derivatives; Generalized entropies; Molecular dynamics simulations; Nonlocal; Relative temperatures; Thermal energy transportThermodynamicsContext (language use)Fractional derivativeFractional-order calculuFractional calculusRelative temperatureHeat fluxModeling and SimulationHeat transferGeneralized entropieMolecular dynamics simulationFractional-order derivativeBoundary value problembusinessConvection–diffusion equationNonlocalSettore ICAR/08 - Scienza Delle CostruzioniThermal energyThermal energy transport
researchProduct

FOURIER TRANSFORMS, FRACTIONAL DERIVATIVES, AND A LITTLE BIT OF QUANTUM MECHANICS

2020

We discuss some of the mathematical properties of the fractional derivative defined by means of Fourier transforms. We first consider its action on the set of test functions $\Sc(\mathbb R)$, and then we extend it to its dual set, $\Sc'(\mathbb R)$, the set of tempered distributions, provided they satisfy some mild conditions. We discuss some examples, and we show how our definition can be used in a quantum mechanical context.

Pure mathematicsfractional derivativesGeneral MathematicsMathematical propertiesFOS: Physical sciencesContext (language use)Mathematical Physics (math-ph)Action (physics)Fractional calculusFourier transformsSet (abstract data type)symbols.namesakeFourier transformfractional momentum operatorDual basissymbols46N50QuantumMathematical PhysicsMathematics
researchProduct

Fractional-Order Theory of Thermoelasticity. II: Quasi-Static Behavior of Bars

2018

This work aims to shed light on the thermally-anomalous coupled behavior of slightly deformable bodies, in which the strain is additively decomposed in an elastic contribution and in a thermal part. The macroscopic heat flux turns out to depend upon the time history of the corresponding temperature gradient, and this is the result of a multiscale rheological model developed in Part I of the present study, thereby resembling a long-tail memory behavior governed by a Caputo's fractional operator. The macroscopic constitutive equation between the heat flux and the time history of the temperature gradient does involve a power law kernel, resulting in the anomaly mentioned previously. The interp…

PhysicsWork (thermodynamics)Order theoryStrain (chemistry)Anomalous heat transferMechanical EngineeringMathematical analysisFractional derivatives02 engineering and technologyFractional derivative01 natural sciencesFractional calculusAnomalous thermoelasticity010101 applied mathematicsMultiscale hierarchical heat conductorsMultiscale hierarchical heat conductor020303 mechanical engineering & transports0203 mechanical engineeringMechanics of MaterialsMechanics of Material0101 mathematicsSettore ICAR/08 - Scienza Delle CostruzioniQuasistatic process
researchProduct

Free energy and states of fractional-order hereditariness

2014

AbstractComplex materials, often encountered in recent engineering and material sciences applications, show no complete separations between solid and fluid phases. This aspect is reflected in the continuous relaxation time spectra recorded in cyclic load tests. As a consequence the material free energy cannot be defined in a unique manner yielding a significative lack of knowledge of the maximum recoverable work that can extracted from the material. The non-uniqueness of the free energy function is removed in the paper for power-laws relaxation/creep function by using a recently proposed mechanical analogue to fractional-order hereditariness.

Work (thermodynamics)Materials scienceMaterial stateFractional orderMaterial scienceSpectral lineDissipation rateMaterials Science(all)Modelling and SimulationGeneral Materials ScienceComplex materials; Continuous relaxation; Dissipation rates; Fractional derivatives; Fractional order; Free energy function; Material science; Power law creepFree energyPower-law creep/relaxationComplex materialbusiness.industryMechanical EngineeringApplied MathematicsRelaxation (NMR)Order (ring theory)Free energy functionFractional derivativesStructural engineeringFunction (mathematics)MechanicsFractional derivativeCondensed Matter PhysicsFractional calculusContinuous relaxationCreepMechanics of MaterialsModeling and SimulationPower law creepbusinessSettore ICAR/08 - Scienza Delle CostruzioniEnergy (signal processing)International Journal of Solids and Structures
researchProduct

Response of nonlinear oscillators with fractional derivative elements under evolutionary stochastic excitations: A Path Integral approach based on La…

2023

In this paper, an approximate analytical technique is developed for determining the non-stationary response amplitude probability density function (PDF) of nonlinear/hysteretic oscillators endowed with fractional element and subjected to evolutionary excitations. This is achieved by a novel formulation of the Path Integral (PI) approach. Specifically, a stochastic averaging/linearization treatment of the original fractional order governing equation of motion yields a first-order stochastic differential equation (SDE) for the oscillator response amplitude. Associated with this first-order SDE is the Chapman–Kolmogorov (CK) equation governing the evolution in time of the non-stationary respon…

Path Integral Laplace’s method of integration Evolutionary excitation Fractional derivativesNuclear Energy and EngineeringMechanical EngineeringAerospace EngineeringOcean EngineeringStatistical and Nonlinear PhysicsSettore ICAR/08 - Scienza Delle CostruzioniCondensed Matter PhysicsCivil and Structural EngineeringProbabilistic Engineering Mechanics
researchProduct